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Methodologic Issues in Using 
Land Cover Data to Characterize 
Living Environments of 
Geocoded Addresses
doi:10.1289/ehp.0901863

Estes et al. (2009) presented an interesting 
analysis of the relationship between blood 
pressure levels of individuals in four metro
politan regions and their living environ ments. 
Remotely sensed data was used to determine 
urban, suburban, and rural living environments 
as well as day/night land surface tempera tures 
(LST). These remotely sensed data sets are 
readily available nationally, increasing the repli
cability and consistency of the methods.

Estes et al. (2009) characterized living 
environments using the 2001 National Land 
Cover Dataset (NLCD; Homer et al. 2004). 
Detailed land cover classes were reclassified 
into broad categories of urban, suburban, 
and rural, and the original 30m resolution 
raster data was resampled to a 1km grid 
using a majority filter to match the resolu
tion of the LST data. Residential addresses 
were geocoded and their location compared 
to the 1km grid cell values to establish the 
living environment variables. There are sev
eral problems that result from this particular 
methodology, which I address below.

First, Estes et al. (2009) geocoded the resi
dential addresses using SAS/GIS geocoding 
software which employs TIGER data (SAS 
2010) from the U.S. Census Bureau for street 
geocoding. The positional accuracy of TIGER 
data is not very good (e.g., Zandbergen 2008), 
and street geocoding in general is not very 
accurate (Cayo and Talbot 2003; Zandbergen 
2009). The street geocoded location of the 
residence of a particular individual is therefore 
not very likely to fall inside the same 30m 
grid cell as the true location of the residence. 
For example, the median error of typical street 
geocoding is in the order of 30–60 m for 
urban areas, about double that for suburban 
areas and much larger in rural areas (Cayo 
and Talbot 2003; Zandbergen 2009). This 
is likely to introduce a substantial number of 
mis classifi cations. Any pointinraster over
lay where the positional error of the points is 
of the same order of magnitude as the raster 
resolution is not very reliable, and the degree 
of misclassification will vary with the spatial 
heterogeneity of the land cover data.

Second, the positional errors in street 
geocoding are not random in nature. Typical 
street geocoding employs a standard offset 
from the roads in the placement of the geo
coded locations. In many areas, however, the 

actual residence is located at much greater 
distances, especially in rural areas. In the 
2001 NLCD land cover data, many rural and 
suburban roads are classified as developed 
open space. This means that geocoded rural 
addresses will typically fall on this land cover 
type, while the actual residence is located on 
an agricultural or vegetated cate gory. This 
adds to the occurrences of misclassifications, 
especially between suburban and rural.

Third, the resampling of the original land 
cover data from 30 m to 1 km using a major
ity filter has the undesirable effect that small 
clusters of one land cover type that are sur
rounded by larger areas of other types will 
simply disappear. Estes et al. (2009) clearly 
acknowledged this and compared the classi
fi cations resulting from different resolutions; 
when resampling from 30 m to 1 km, only 
63% of all locations were classified the same. 
This effect of resampling will vary between 
study areas. For example, urban development 
in Atlanta, Georgia, is relatively fragmented 
and the resampling results in a substantial 
reduction of the total area (from 2.0% of the 
study area in the original 30m grid to 0.94% 
in the 1km grid). A more compact urban 
development pattern such as Chicago, Illinois, 
is more robust to the effect of resampling.

The resampling does overcome some of 
the misclassifications introduced by the errors 
in street geocoding. In effect, the land cover 
type at the exact location of the geocoded 
address is no longer of greatest interest, and 
instead the “majority” land cover of the sur
rounding area is used. However, the effects 
of street geocoding errors and resampling will 
vary greatly between study areas, reducing the 
robustness of the final classifications of study 
subjects and introducing potential bias.

One approach to overcome some of 
these problems is to use the 2001 impervious 
cover data, which is provided as a comple
ment to the 2001 NLCD land cover data. 
Imperviousness is classified between 0 and 
100% and corresponds closely to the different 
land cover types, albeit providing more detail. 
The benefit of using impervious cover is that 
during resampling a simple averaging filter 
can be used instead of a majority filter. This 
type of filter produces unbiased results that 
are not dependent on the spatial hetero geneity 
of the landscape or the scale of resampling. 
Similar urban, suburban, and rural categories 
can be identified and will remain more robust 
under various resampling scenarios. 

The availability of moderate to high 
resolution remotely sensed data at national 
and global scales is providing unprecedented 

opportunities to compare health observa
tions to environmental variables, including 
land cover and climatic factors. When com
bining data from different sources, great care 
should be taken to ensure the accuracy of the 
input is sufficient to produce reliable results 
given the specific analysis methods employed. 
Street geocding in particular has been under
estimated as a source of positional error. 
In addition, when resampling methods are 
employed to produce data sets of matching 
resolution, robust methods are needed to avoid 
the unnecessary introduction of noise and bias.
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Using Land Cover Data 
to Characterize Living 
Environments of Geocoded 
Addresses: Estes et al. Respond
doi:10.1289/ehp.0901863R
We appreciate the insightful and informa
tive letter about the methodology used in 
our article (Estes et al. 2009). We agree 
with Zandbergen about the methodology 
employed by the SAS/GIS software used 
for geocoding the REGARDS (REasons for 
Geographic and Racial Differences in Stroke)
participants. As one of the REGARDS study 
goals, we plan to regeocode the participants 
using a more accurate method. However, 
because our article focused on classifying the 
“living environment” (defined as urban, sub
urban, and rural) and because most people 
do not spend the majority of their time at 
their house or within the raw resolution area 
(30 m × 30 m), the geocoding errors that are 
in the levels of tens of meters become less 
relevant. This is true especially when we resa
mple to a coarser resolution (1 km vs. 30 m), 
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as we did in our methodology to characterize 
the participants’ living environ ment. 

With respect to the misclassification that 
may be introduced due to the resolution used 
to classify participants, Zandbergen is correct 
that resampling to different resolutions did 
change the classification of the participants. 
However, the results of the analyses were 
consistent regardless of the resolution of the 
classification, indicating that while this may 
influence the exposure itself, it does not influ
ence the relationship between the exposure 
and the outcome. 
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What Can Affect AOD–PM2.5 
Association? 
doi:10.1289/ehp.0901732
Although satellite remote sensing has 
advanced significantly in recent years, there 
are inherent weaknesses in the use of this 
technology. The association between satellite
based aerosol optical depth (AODS) and air 
pollution monitored on the ground can be 
influenced by a number of factors. In their 
article, Paciorek and Liu (2009) highlighted 
the weaknesses of AODS to predict the spa
tial distribution of fine particulate matter 
≤ 2.5 µm in aero dynamic diameter (PM2.5). It 
is a timely article given the increasing impor
tance of indirect methods, including satellite 
data, to estimate air quality because of scarce 
and ad hoc spatial–temporal coverage of air 

pollution monitored by federal regulatory 
methods. It is important that the robustness 
of these methods is evaluated, and Paciorek 
and Liu’s article is such an attempt. However, 
they failed to address the role of five major 
factors that can influence the AODS–PM2.5 
association. These factors include decomposi
tion of AODS by aerosol types, mismatch in 
spatial–temporal resolution, collocation and 
integration of AODS and PM2.5 data, and 
control for spatial–temporal structure in the 
statistical model. Consequently, the weak
nesses in Paciorek and Liu’s study lead me to 
question their findings. 

The columnar measurement of AODS 
consists of aerosols generated by anthropo
genic (human) sources (AODSh), such as 
emissions from industries and vehicles, and 
natural sources (AODSn), such as water vapor 
or dust in the air. AODSn that constitutes 
a large fraction of AODS is influenced by 
moving large air masses and observes a strong 
spatial and temporal structure. The concentra
tion of PM2.5, however, can vary significantly 
within short distances. Therefore, there is a 
significant mismatch in the magnitude and 
extent of spatial and temporal variability of 
AODSn and AODSh; without an adequate 
control for AODSn, it is difficult to develop a 
reliable PM2.5 predictive model using AODS 
(Kumar et al. 2008).

Paciorek and Liu (2009) recognized that 
the spatial–temporal resolutions of AODS 
and PM2.5 they used were different, but 
they did not address how the mismatch in 
the spatial–temporal resolutions of these 
data can influence their association. The spa
tial resolutions of MISR (multi angle imag
ing spectro radiometer), MODIS (moderate 
resolution imaging spectroradiometer), and 
GEOS (geostationary operational environ
mental satellite) AOD were 17.6 km, 10 km, 
and 4 km, respectively, and PM2.5 data were 
point measurements aggregated across 24 hr. 
A recent study suggests the strength of the 
AODS–PM2.5 association diminishes with 
the increase in time interval used for their 
aggregation (Kumar et al. 2007). It would 
have been useful for Paciorek and Liu (2009) 
to document the implications of the spatial–
temporal reso lu tions and aggregation of AOD 
and PM2.5 (data they used) on their findings.

AODS retrieval and PM2.5 are not avail
able on the same days: AODS retrieval is not 
possible on cloudy days, and PM2.5 data are 
recorded every third or sixth day. It seems 
that Paciorek and Liu (2009) averaged 
all AODS at 4km pixel (i.e., 16 km2 area; 
monthly and yearly) and all PM2.5 (in the 
pixels where a monitoring station was situ
ated). This could have resulted in a weak asso
ciation between AODS and PM2.5, because 
there were systema tic temporal gaps in both 
AODS and PM2.5 data sets. A reasonable 

approach to address this problem is to aggre
gate AODSPM2.5 data for those days only 
when both AODS and PM2.5 are available. 

Paciorek and Liu’s method for aggregating 
17.6km and 10km AODS to a 4km pixel 
seems problematic. First, a radiative transfer 
model is used to retrieve AODS (Remer et al. 
2006) which removes pixels with the upper 
50% and lower 20% of the reflectance values. 
This removal can be systematic. For example, 
pixels with high reflectivity (such as buildings 
and roads) are more likely to be removed than 
the vegetated pixels (i.e., pixels under vegetation 
canopy). Thus, the centroid of a 10km AODS 
pixel may not represent the AODS value for 
the entire 10km area. Second, AODS regis
ters a strong spatial–temporal auto correlation. 
Thus, time–space kriging that utilizes large 
number of data points is appropriate for AODS 
aggregation rather than a single AODS value to 
avoid an area specific bias.

The robustness of AODS retrieval is 
evaluated by its comparison with the AOD 
recorded by sunphotometers at AERONET 
sites (AODA) (NASA 2007). The spatial reso
lution at which AODS is retrieved and the 
spatial–temporal intervals within which these 
data are aggregated may directly influence its 
comparison with the AODA . This, in turn, 
can influence the association between AODS 
and PM2.5. Recent literature suggests that 
1km and 5km AODS observe a significantly 
better association with PM2.5 monitored on 
the ground than the 10km AODS (Kumar 
et al. 2007; Li et al. 2005). Therefore, the 
optimal spatial resolution of AODS retrieval 
and the optimal spatial and temporal inter
vals for aggregating these data are critically 
important for developing time–space resolved 
estimates of air quality with the aid of AODS.

Because meteorologic conditions are 
largely influenced by the prevailing air masses 
and do not vary significantly within thou
sands of miles for a short period of time, the 
AODSn component of AODS is likely to have 
a strong spatial–temporal structure. PM2.5 that 
constitutes particulate mass associated with 
anthropogenic factors, however, varies signifi
cantly within short distances from emission 
sources. Therefore, to develop a PM2.5 predic
tive model it is important that only AODSh is 
used instead of AODSn. If such data are not 
available, an alternative is to indirectly control 
for AODSn and its associated spatial–tempo
ral structure. Otherwise the predicted PM2.5 
surface is likely to have an unrealistic spatial 
trend, as reported by Paciorek and Liu (2009), 
as well as unrealistic temporal trends.
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AOD–PM2.5 Association: 
Paciorek and Liu Respond
doi:10.1289/ehp.0901732R

We thank Kumar for his letter about our 
article (Paciorek and Liu 2009). We hope 
this exchange will highlight some of the key 
issues in using aerosol optical depth (AOD) 
for air quality purposes, in particular with 
regard to our focus on epidemiologic use. 
More dialogue is needed between scientists 
involved in remote sensing and those study-
ing air pollution exposure and its epidemio-
logic effects with regard to the challenges 
and needs involved in making the remote 
sensing products helpful in applications. Our 
response to Kumar’s letter highlights our 
perspective on these challenges. 

We agree that in our article (Paciorek 
and Liu 2009) we used AOD in a rela-
tively straightforward way, and we welcome 
more advanced approaches to making use 
of AOD; in fact, one of us (Y.L.) is heavily 
involved in such work. The scientific chal-
lenge is to ensure that more advanced tech-
niques can be used over an entire continuous 
time period and spatial area needed in a 
given epidemiologic or regulatory context. 
In our analysis we did our best to make use 
of currently available AOD products and to 
adjust for meteorologic variables and large-
scale spatial discrepancy between AOD and 
particulate matter ≤ 2.5 µm in aero dynamic 
diameter (PM2.5) based on the data available. 
More sophisticated approaches will hope-
fully reduce the discrepancy between PM2.5 
and AOD, but this does not change the need 
for rigorous assessment of the use of AOD 
as a proxy for PM2.5. An important test—
which we explored—is the ability of AOD 
to help improve PM2.5 predictions, beyond 
reporting correlations between AOD and 
PM2.5. Furthermore, even with improved 
approaches in which systema tic discrepancy 
may be alleviated, systematic discrepancy 
seems unlikely to disappear, and we believe 

serious consideration of AOD as a proxy for 
PM2.5 in the future will need to consider the 
nature of this discrepancy and its implica-
tions for the contexts in which AOD is used 
as a proxy for PM2.5. 

To the extent that natural sources of 
AOD do not correlate with concentrations 
of ground-level PM2.5, we agree with Kumar 
that it would be ideal to control for such 
sources. We used the standard MODIS 
(moderate resolution imaging spectro-
radiometer) AOD product because this 
product would be available to general users; 
however, it would be appealing if a more 
tailored AOD retrieval algorithm could be 
applied over the spatial and temporal domain 
of interest for a given application. From 
reading the article by Kumar et al. (2008; 
particularly p. 3390), we did not see a spe-
cific algorithm proposed to decompose AOD 
into anthropogenic and natural sources or to 
control for natural sources. 

As noted by Kumar, averaging all 
data—rather than matching in time before 
averaging—reduces associations. However, 
when interest lies in developing a proxy for 
long-term average PM2.5, the average of all 
monitoring data available at a regular inter-
val should be an unbiased estimate of true 
PM2.5 at the location, which is the quantity 
one would like to have everywhere in space. 
Estimated associations based on matched data 
therefore are an overly optimistic assessment 
of AOD as a proxy for true long-term PM2.5. 
Of course for shorter intervals, the variability 
in estimates of true PM2.5 that are based on 
small numbers of daily samples will contribute 
to reduced AOD—PM2.5 association, so there 
are tradeoffs in deciding whether to match. 
One also needs to consider whether using 
matching introduces bias because missing 
AOD is associated with particular meteoro-
logic conditions that also likely correlate with 
PM2.5 levels (Liu et al. 2009; Paciorek et al. 
2008). Finally, in unpublished work, we have 
seen moderate improvements in associations 
when matching, but these improvements were 
not so large as to suggest that lack of time-
matching is the key reason for the results seen 
in our article (Paciorek and Liu 2009). The 
reference to results on the diminishing associ-
ation with longer-term aggregation by Kumar 
et al. (2007) seems to reinforce our very point: 
One should be cautious about using AOD 
as a proxy for PM2.5 when aggregating over 
time, but this is precisely one of the contexts 
in which we need proxies for PM2.5. Health 
analyses do not have the luxury of only ana-
lyzing health outcomes that correspond to 
the time periods (and spatial locations) for 
which AOD is available or for which AOD is 
thought to be a more reliable proxy.

Given the pixel-scale AOD retrievals 
(and the changing MODIS pixels from day 

to day), to spatially align our various data 
sources we took the ad hoc approach of 
assigning to each 4-km grid cell the value of 
the nearest MODIS AOD pixel overlapping 
the grid cell, requiring the distance between 
the cell and pixel centroids to be no greater 
than the nomi nal distance between AOD 
pixel centroids. This does not fundamentally 
change the AOD spatial pattern but does 
somewhat blur the original AOD values at 
the pixel boundaries. We recognize that it 
is difficult to compare a pixel-wide AOD 
value to a point observation of PM2.5, and 
of course one cannot expect AOD to provide 
information below its nomi nal resolution. 
Given this, in our statistical modeling we 
did our best to account for local sources of 
variation in PM2.5, namely distance to roads 
and to point sources, that cause the point-
level observations to necessarily differ from 
the pixel-scale AOD. One would hope that 
the AOD pixel value represents variation in 
AOD at the scale of pixels or at somewhat 
larger resolution (such as distinguishing vari-
ation at scales up to 50–100 km) that dif-
ferentiates urban, suburban, and rural areas. 
We would like variation at this scale to pro-
vide information on PM2.5 variation at the 
same scale that would improve prediction of 
PM2.5, but our results unfortunately did not 
provide evidence for such improvement. It 
is not completely clear what Kumar is sug-
gesting as an alternative to using the value 
of AOD assigned to a pixel as representative 
of the entire pixel area, but it seems to be an 
approach that uses subpixel-scale informa-
tion not available in the current MODIS 
AOD product. This seems promising, and we 
welcome work on providing AOD at higher 
resolution and evaluating whether more 
highly resolved AOD improves predictions 
of PM2.5. A key issue from this perspective 
is not the nominal resolution at which AOD 
is provided but the resolutions at which it is 
associated with spatial variations in PM2.5.

It was not entirely clear what Kumar is 
suggesting in terms of how to control for 
natural-source AOD and its spatio-temporal 
structure. With regard to large-scale discrep-
ancy between AOD and PM2.5 that might 
mask smaller-scale correspondence, we used 
AOD and PM2.5 data to estimate and adjust 
(our calibrated AOD) for large-scale spatial 
discrepancy that persists over time but found 
that this did not improve matters, suggesting 
that small-scale discrepancy between PM2.5 
and AOD is a major concern.
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